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Executive Summary 

This report discusses the design, development and evaluation of a prototype software package for 

detecting railway track anomalies using computer vision. Although the software’s algorithms can 

be used on different kinds of tracks, the development team has focused on concrete ties in use on 

high-speed rail (HSR) corridors. Detecting HSR track anomalies is more challenging than 

finding those on conventional tracks. For example, HSR track requires more frequent inspections 

and it usually has shorter maintenance windows than conventional track. Recently, the railroad 

industry has been adopting machine vision technology as a complement to inspecting track 

manually or other forms of inspection. However, limitations in machine vision system 

capabilities, including high false positive rates, inhibit the widespread use of these technologies.  

The project’s objective was to advance the state of the art in automatic anomaly detection for 

railway track inspection (and other outdoor environments). To accomplish this objective, we 

have performed basic and applied computer vision research, designed several anomaly detection 

algorithms, and then implemented a prototype software system that can be programmed to detect 

cracks, missing/broken fasteners, chips, and crumbling on concrete ties. Because railroads have a 

need for deployable systems, project development was focused on methods that can be scaled up 

to the image acquisition data rates that are currently used. 

To test the anomaly detection algorithms, the team used 329 miles of concrete tie images that 

had been collected from three surveys conducted b y ENSCO, Inc. between 2012 and 2013 on 

Amtrak’s Northeast Corridor (NEC). These images were scanned into the Euclid computer 

cluster at the University of Maryland, then  highly customized image annotation tools were 

created for ENSCO reviewers to generate the ground truth data that was used to evaluate the 

algorithms. The user interface is a client application that was carefully designed to facilitate 

evaluation tasks and allow railroad users to quickly review the results of automated detections. 

This interface connects to a database through an HTTPS interface to generate annotation reviews 

and detection results. Multiple users can access the database to review the same or different 

sections of the track. 

Three computer vision algorithms are described by this report: 1) A crack detector based on 

decomposing images into edge and texture components, 2) a missing/broken fastener algorithm 

based on computer vision features and a statistical classifier, and 3) a crumbling/chipped tie 

detector based on a material classifier that uses a deep convolutional neural network architecture. 

 The crack detector accurately detected the outline of cracks with different sizes and 

orientations under a variety of background textures, but the ability to accurately 

differentiate between cracks and other edges in the image is not yet mature enough for 

practical use. 

 The fastener detection algorithm finds the location and type of each fastener, and can 

determine whether a fastener is broken or missing with a probability of detection of 98% 

and a false alarm rate of 123 FP/mile (false positives per mile assuming 2.5K ties per 

mile). However, most false alarms are due to special track work, ballast covering the 

fastener and other occluding elements. Among clear ties on regular track, the detection 

rate is 98.36% and the false alarm rate is 38 FP/mile. Among fasteners in good condition, 



 2 

the algorithm can classify the type of fastener among five categories (PR clip, e clip, 

fastclip 1, fastclip 2, c-clip, and j-clip) with an accuracy of 98.2%. 

 The algorithm for detecting crumbling and chipped ties has two steps. First, the algorithm 

employs a multiclass detector that has been trained on ten different types of material 

(ballast, wood, rough concrete, medium concrete, smooth concrete, crumbling concrete, 

chipped concrete, lubricator, rail, and fastener) to scan each region of the image. This 

detector uses a deep convolutional neural network to achieve 93.55 percent accuracy. 

Second, the algorithm estimates the likelihood that the area of the tie affected by 

crumbling or chipping exceeds a predefined threshold. For defects that are bigger than the 

10% threshold (at a false positive rate of 10 FP/mile), the detection rates are 86.06% for 

crumbling and 92.11% for chips. 

To be a fully automated solution that the railroad industry can adopt, more research will be 

needed to address the following: 

 The false alarm rate could be further reduced by developing adaptive algorithms that can 

operating conditions and the probability distribution of the background clutter. 

 The segmentation algorithm used to detect crumbling and chipped ties should be adapted 

to filter ballast and other obstructing tie elements that currently cause false crack 

detections 

 The dataset used in this report contains only concrete ties from the NEC.  In order to 

validate the performance on more general conditions, more data collection and analysis is 

required. 

 Other potential research areas that include detection and assessment of other track 

components; learning from poorly labeled data; matching, alignment and change 

detection of track components; and automated tie grading. Also, the addition to other 

channels such as depth or color are worth exploring as well. 

In conclusion, this report describes a new approach for inspecting railway tracks using recent 

advances in the area of computer-assissted vision and pattern recognition. The algorithms 

described in this report have been packaged into an integrated software suite that will allow 

different railroad users to configure it for their specific needs. We hope that this work will jump-

start the research and development of new technological solutions in visual track inspection.  
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1. Introduction 

In this section, the team describes the problems that occur when computer vision technology is 

used to detect anomalies in railway track components, discusses the modular architecture that 

was used to design and integrate the software package system, and explains how potential 

algorithms were evaluated. 

1.1 Background 

To ensure railroad safety, the condition of railway components must be continuously monitored, 

Amtrak has discovered that concrete ties encounter different degradation-related problems than 

wood ties (Smak, 2012). Although concrete ties have a life expectancy of up to 50 years, they 

may fail prematurely for many reasons: 

 Alkali-silicone reaction (ASR), which is a chemical reaction between cement alkalis and 

non-crystalline (amorphous) silica that forms alkali-silica gel at the aggregate surface 

(Shehata & Thomas, 2000). These reaction rims have a very strong affinity with water 

and have a tendency to swell. These compounds can produce internal pressures that are 

strong enough to create cracks, allowing moisture to penetrate, and thus accelerating the 

rate of deterioration. 

 Delayed Ettringite Formation (DEF) is a type of internal sulfate attack that occurs in 

concrete that has been cured at excessively high temperatures (Sahu & Thaulow, 2004). 

 In addition to ASR and DEF, ties can also develop fatigue cracks due to normal traffic or 

by being impacted by flying debris or track maintenance machinery. Once small cracks 

develop, repeated cycles of freezing and thawing will eventually lead to bigger defects. 

Fasteners maintain gage by keeping both rails firmly attached to the crossties. According to the 

Federal Railroad Administration (FRA) safety database
1
, in 2013, out of 651 track-related 

derailments, 27 of them were attributed to gage widening caused by defective spikes or rail 

fasteners, and another 2 to defective or missing spikes or rail fasteners.  

Also, in the United States, regulations enforced by the FRA
2
 prescribe visual inspection of high-

speed rail tracks with a frequency of once or twice per week, depending on the class of track 

(which specifies maximum authorized speeds for both freight and passenger trains). These 

manual inspections are currently performed by railroad personnel, either by walking on the 

tracks or by riding a hi-rail vehicle at very low speeds. However, such conventional visual 

inspections of mainlines are subjective and do not produce an auditable visual record. In 

addition, railroads usually perform automated track inspections with specialized track geometry 

measurement vehicles within an interval of 30 days or less between inspections. These 

automated inspections can directly detect gage widening conditions. However, it is preferable to 

find fastening problems before they develop into gage widening conditions. 

Since the pioneering work by Cunningham, Shaw, & Trosino (2000) and Trosino, Cunningham, 

& Shaw (2002), machine vision technology has been gradually adopted by the railway industry 

                                                 
1
 http://safetydata.fra.dot.gov 

2
 49 CFR 213 -- Track Safety Standards 
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for track inspection. Their first generation systems could collect images of the railway right of 

way and store them for later review, but the images were not used in for automated detection of 

anomalies or defects. As faster processing hardware became available, several vendors began to 

introduce vision-detection systems with automation capabilities. 

The VISyR system, which detects hexagonal-headed bolts using two 3-layer neural networks 

(NN) running in parallel, is described in Marino, Distante, Mazzeo, & Stella (2007) and De 

Ruvo, Distante, Stella, & Marino (2009). Both NNs use the 2-level discrete wavelet transform 

(DWT) of a 24×100 pixel sliding window (their images use non-square pixels) as a input for 

generating a binary output that indicates the presence of a fastener. However, the first NN uses 

Daubechies wavelets, while the second uses Haar wavelets; the wavelet decomposition is 

equivalent to performing edge detection at different scales with two different filters. Both neural 

networks are trained with the same examples. The final decision is made using the maximum 

output of each neural network.  

The VisiRail system for joint bar inspection is discussed in Gibert, Berry, Diaz, Jordan, 

Nejikovsky, & Tajaddini (2007) and Berry, Nejikovsky, Gibert, & Tajaddini (2008). The system 

is capable of collecting images on each rail side, and finding cracks on joint bars using edge 

detection and a Support Vector Machine (SVM) classifier that analyzes visual features extracted 

from these edges.  

Babenko (2009) describes a fastener detection method based on a convolutional filter bank that is 

applied directly to intensity images. Each type of fastener has a single filter associated with it, 

whose coefficients are calculated using an illumination-normalized version of the Optimal 

Tradeoff Maximum Average Correlation Height (OT-MACH) filter as seen in Mahalanobis, 

Kumar, Song, Sims, & Epperson (1994). This approach allowed accurate fastener detection and 

localization and it achieved over 90% fastener detection rate on a dataset of 2,436 images. 

However, the detector was not tested on longer sections of track.  

Resendiz, Hart, & Ahuja (2013) discusses how the authors classified textures with a bank of 

Gabor filters then used an SVM to determine the location of rail components such as crossties 

and turnouts. They also use the MUSIC algorithm to find spectral signatures to determine 

expected component locations. In Li, Trinh, Haas, Otto, & Pankanti (2014), the authors describe 

a system for detecting tie plates and spikes. Their method, which is described in more detail in 

Trinh, Haas, Li, Otto, & Pankanti (2012), uses an AdaBoost-based object detector as seen in 

Viola & Jones (2001) and employs a model selection mechanism which assigns the object class 

that produces the highest number of detections within a window of 50 frames. 

Recent advances in CMOS imaging technology have led to commercial-grade line-scan cameras 

that can capture images with high resolution and line rates of up to 140 KHz. High-intensity 

LED-based illuminators are available with life expectancies in the range of 50,000 hours 

providing nearly maintenance-free operation over several months. Therefore, technology that 

enables autonomous visual track inspection from an unattended vehicle (such as a passenger 

train) may become a reality in the not-too-distant future. Now that the systems integration 

challenges are solved, we expect that there will be a surge in applications in the near future. 
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1.2 Objectives 

The goals of this project were two-fold: 

1. Research novel computer vision techniques for detection of flaws in railway images, 

and 

2. Develop these algorithms in software and demonstrate them with real data. 

1.3 Overall Approach 

This project aimed to facilitate the adoption of the newly-developed technology by the railroad 

industry. Technology transfer occurred during this project, including proof-of-concept code and 

usable test software.  The system was evaluated by our industry partners, so more specific 

requirements could be gathered and future deployments could be facilitated. This process will 

facilitate future integration with systems used by the industry, thereby avoiding delays in 

technology deployment. To ensure a smooth technology transfer, we followed industry software 

development practices to guarantee code modularity, maintainability, verifiability and 

reproducibility. 

1.4 Scope  

High Speed Rail (HSR) track anomalies are harder to find than conventional track anomalies 

because more frequent inspections are required and shorter maintenance windows are available. 

Machine vision technology is being adopted by the industry to complement other forms of 

inspection. 

This research effort is designed to provide the rail industry with the latest advances in vision-

based anomaly detection and machine learning algorithms, and existing as well as new 

algorithms have been used during this project. It produced a prototype software module that 

takes images of rail components as its input and returns the position, size and type of each 

detected anomaly with a corresponding score.  This research has been tested for three safety 

applications of special concern to high speed and intercity passenger rail inspectors: 

1) Detection of cracks on concrete ties. 

2) Detection of missing and broken rail fasteners. 

3) Detection of crumbled and chipped concrete ties. 

1.4.1 Dataset 

The algorithms’ performance has been demonstrated using data collected from concrete tie track 

and the tools have been designed to be relatively user-friendly.  

This anomaly detection module has been demonstrated with CTIV, a visual track inspection 

system that is used by FRA, ENSCO, and the rail industry. It was used to collect the data used in 

this report and the FRA project “Concrete Tie Degradation Assessment.” The images were 

collected at a resolution of 0.43 mm/pixel and a single color channel at 8 bits per pixel. ENSCO 

provided raw images and the output of their tie detection algorithm, while Amtrak provided 

metadata such as tie installation year, tie manufacturer, track speed, curvature, and annual 

tonnage. All the ties in this dataset are made of reinforced concrete, and they were manufactured 

by San-Vel or Rocla then installed between 1978 and 2010.  The collected images were 
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automatically stitched together and saved into several files, each containing a 1-mile image. The 

dataset is summarized in Table 1. 

Table 1. Dataset summary. 

Survey Date # Miles Data Size # Ties 
# Ties w/ 

conditions 

# Ties w/ 

full 

annotations 

BAA_Test1 August 2012 97 3.5 TB 236,578 25,314 5,005 

BAA_Test2 April 2013 112 4.0 TB 281,040 2,150 1,101 

BAA_Test3 Sept. 2013 120 3.7 TB 338,730 2,008 1,881 

 

Since only a subset of the data was fully reviewed by ENSCO personnel during the tie 

degradation assessment, in this report we publish results based on that subset. We selected all the 

miles from the first 2 surveys that were manually aligned by ENSCO reviewers. This subset 

contains 85 miles of continuous trackbed images. Then we verified that all the tie boundaries in 

this subset were accurate after correcting invalid tie detections visually. Table 2 summarizes the 

data subset that was used for our experiments in Sections 5 and 6. 

 

Table 2. Data subset used in our experiments. 

MP range Track # Surveys  MP range Track # Surveys 

189 1 1, 2  173 2 1, 2 

191-194 1 1, 2  176-177 2 1, 2 

198-199 1 2  181-184 2 1, 2 

201 1 2  186 2 1, 2 

203 1 2  190-191 2 1, 2 

207-209 1 2  192 2 1, 2 

210-211 1 1, 2  193-197 2 2 

212-213 1 2  198 2 1, 2 

143-144 2 1, 2  199-203 2 2 

159 2 2  205 2 2 

160-161 2 1, 2  206 2 1, 2 

162 2 2  207-208 2 2 

163 2 1, 2  209 2 1, 2 

164-167 2 2  210-211 2 2 

170-171 2 1, 2     
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1.5 Organization of the Report 

The rest of this report is organized as follows: 

 Section 2 describes the general design considerations and the system architecture 

 Section 3 describes the front-end module (the Vision Client) 

 Section 4 describes the crack detection algorithm 

 Section 5 describes the fastener inspection algorithm 

 Section 6 describes the material identification and chip/crumbling detection algorithm 

 Section 7 discusses the conclusions of this work and potential future research directions 

 Section 8 provides references to related material
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2. System Architecture 

This section describes the overall architecture of our system. 

2.1 General Design Considerations 

In this project, we designed a data processing and manipulation system that extracts information 

from large amounts of visual data. To ensure that the software meets current and future 

requirements, while minimizing design and implementation risks, the design has the following 

characteristics: 

 Simplicity: If there are multiple approaches to implementing a feature, the least complex 

approach to meeting the requirements shall be selected. Simple interfaces based on standard 

protocols shall be exposed to developers and we shall prefer external libraries that provide a 

simple and consistent interface. 

 Data locality: Data processing shall be scheduled to minimize the need of large data 

transfers. For instance, all the operations on a single piece of data (such as an image) should 

be performed on the same node, and intermediate results should be reused locally. We can 

still take advantage of parallel processing on the same image, but this parallelism should be 

limited to using multiple threads on the same node, and not by using separate nodes. When 

GPU hardware is used to perform computations, all processing steps shall be performed by 

the same GPU device to avoid time-consuming transfers of intermediate results. However, 

local memory transfers between host and GPU are still faster than remote transfers so any 

CPU processing that needs to be done on GPU-generated results should be done in the same 

node, even if there are other nodes with faster CPUs. 

 Throughput vs. Latency: For the applications that are envisioned in this project, achieving 

maximum average throughput is more important than minimizing worst-case latency. 

Therefore, the scheduling will be designed for maximum resource utilization except for user 

interface threads, which will be granted higher scheduling priority than processing threads. 

 Accuracy vs. Speed: For research purposes, the results must be exactly repeatable. 

Therefore, we will only select an optimization strategy that generates the same output for the 

same input. Thus, if there are algorithms that could be executed on either CPU or GPU and 

these algorithms involve floating point operations, their scheduling should be deterministic 

and for a given image, such operation must be performed by the same type of device, since 

different platforms use different numbers of significant digits and rounding methods. Also, 

since processors have internal floating-point registers that have higher precision than the 

operands, different processors may generate different results. The results are not guaranteed 

to be the same even on the same processor if different compiler settings are used, because 

certain math functions that can be compiled to a 64-bit binary can produce different results in 

the corresponding 32-bit binary. This is also the case across CUDA computer capabilities. 

For example, code running on a GPU with compute capability 2.0 takes advantage of 

optimizations that are not available on a device with compute capability 1.1, so results are 

not guaranteed to be the same. Therefore, the only way to ensure that the results are always 

the same is to run the same binary on the same processor type. Although this consideration is 

important during research, these differences are not statistically significant, so in practical 

deployments it will be possible to enable such optimizations. 
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 Resource utilization: To avoid processing bottlenecks, the scheduler shall use load 

balancing strategies to ensure that resource utilization across the cluster is almost constant. 

 Handover: The software should support dynamic scheduling of processes across the cluster. 

Since the computing cluster is shared with other projects, jobs can only be scheduled for a 

limited length of time (wall time). Therefore, the process scheduler will be required to 

“reroute” tasks whenever a process terminates or a new process is launched to keep the 

processing flow in place. 

 Reproducibility: The software should produce exactly repeatable results. This means that 

any algorithm that relies on random numbers should use a pseudorandom number generator 

that has been initialized with a deterministic seed which only depends on the input data, and 

the state of the generator should not be shared across threads. Also, all parallel paths should 

have synchronized merging, and all data transfers should be atomic. 

 Testability: To facilitate debugging, the software shall provide several intermediate test 

points, so that for any error condition that may arise, we can easily build a unit test to help 

debug and fix it. 

 Error handling: For research purposes, an error that leads to an undetermined state, such as 

data corruption, shall be considered a bug and shall immediately abort the data processing 

and notify the user. Timeouts shall also be considered bugs and shall also be treated as 

unrecoverable errors. 

 Logging: The framework shall support centralized logging of events. 

The following considerations will arise whenever we want to deploy this software into a real 

visual track inspection vehicle: 

 Causality: If all the data is available, it is possible to infer a better decision if the system 

analyzes all the data at once (batch processing). However, in practice, the user does not want 

to wait until all the data is collected but he or she usually prefers to get results as soon as 

possible. Therefore, the system will have to provide results based on data collected up to a 

certain time. This sequential processing will be implemented with a fix delay, so it is possible 

to use some data “ahead” of the current location. 

 Direction independence: Track inspection systems are usually expected to provide the same 

results independently from the direction the vehicle travelled then the data was acquired. This 

symmetry requirement, combined with the causality requirement implies that the inference 

and the decision must be performed using only data within a fixed window length. Although 

this symmetric mode of operation may make sense in an unattended setting, if we allow the 

system to learn from user feedback, the results will no longer be direction independent. 

Therefore, we will not take this constraint into consideration. 

2.2 Software design 

2.2.1 Programming languages 

We have used C++ for all the code in this project. We have taken advantage of Qt's C++ 

extensions, and used Qt's signal/slot mechanism for event driven code. This code needs to be 

preprocessed with moc, the meta-object compiler provided with the Qt framework, but moc is 
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available for all major OSs so this is not a limitation. We have used MATLAB to quickly 

prototype some algorithms, but we have ported them to C++ due to the throughput limitations of 

MATLAB code. GPU code has been written in CUDA C++, which is an extension of the C++ 

programming language. CUDA C++ needs to be compiled with NVIDIA's nvcc compiler. The 

nvcc compiler is also available for all major OSs. 

2.2.2 Software libraries 

We have used third party libraries to speed up software development. To guarantee that the 

software is portable, we have given preference to libraries that are open-source and are available 

under a public license. For functionality that is not available from open-source libraries, we have 

used libraries that are well supported by the vendor, have a large user base, and are available 

under both Linux and Windows. We avoided using any software component that requires any 

payment of per user or per CPU royalties because that would have limited our ability to transfer 

the technology. Fortunately, there are plenty of high-quality libraries that meet these 

requirements. Table 3 enumerates all the third party libraries and frameworks that we have used 

in this project. 

 

Table 3. Libraries used in this project. 

Library Description and Purpose Version License 

Qt Portable application framework, user 

interface, messaging and threading 

5.3.1 LGPL 

OpenCV Image processing and computer vision 2.4.9 BSD 

BVLC Caffe Deep learning with convolutional neural 

networks 

Rc BSD 

CUDA SDK Parallel computing on GPU 6.5.14 Freeware 

Intel IPP Optimized image processing primitives 2013 sp1.1.106 Commercial 

 

2.3 Modular architecture 

The software for this project has four main modules. These modules have been designed to 

interface with each other, but the interface is open. In the future, this will facilitate the addition 

of new modules or the reconfiguration of existing ones, enabling new applications. The modules 

have generic components, so that the basic functionality can be reused to create specialized 

modules for specific applications such as tie crack detection, missing fastener detection or 

crumbling tie detection. In this section we only describe the generic functionality of each 

module. Figure 1 shows a potential system configuration using the components described in this 

report. 
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Figure 1. System configuration as envisioned to be deployed on a track inspection vehicle 
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2.3.1 Vision Client 

This module is the front-end of the framework and it contains the user interface. The Vision 

Client can be used to view data, edit annotations, inspect intermediate results, and launch 

processing tasks. Section 3 provides more details about the client. 

Table 4. Vision Client module overview. 

Inputs Interactive user input, data from backend 

Outputs Control messages to backend, user-generated data 

Responsibilities Data annotation, data review, launching of processing, monitoring 

Interactions Data proxy, process scheduler 

Preconditions It depends on the data operation performed by the user 

Postconditions Annotations will be updated (if the user has modified them) 

2.3.2 Data Proxy 

The data proxy allows all other components to communicate with each other. It listens to two 

different ports: one implements the HTTP protocol to serve data objects and data files and the 

other provides event notifications. The HTTP server supports both GET and POST commands. 

The main function of the data proxy is to serve as a repository of data objects. This server also 

accepts requests for raw data in case the applications cannot directly access the data. The data is 

fetched from the shared repository and is transferred via HTTP. We have configured a local 

Apache web server as a reverse proxy to reroute HTTP traffic over HTTPS, so the data is always 

transferred securely through the Internet. 

Table 5. Data proxy overview. 

Inputs Data requests from other modules 

Outputs Data replies, event notifications 

Responsibilities 
Serve as a repository of data objects. Serve as an interface to the data, so other 

modules can safely access it. Send notifications to modules 

Interactions All other modules 

Preconditions None 

Postconditions Always reachable 

2.3.3 Process Scheduler 

The process scheduler abstracts the structure of the computing cluster for the rest of the system. 

The scheduler is responsible for launching, monitoring and terminating processes that run on 

several computers across the network. In our current implementation, the process scheduler is 

integrated within the data proxy. 
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Table 6. Process scheduler overview. 

Inputs 
Commands from front end, status from processing modules, event 

notifications from data proxy 

Outputs Commands to processing modules, commands to Torque 

Responsibilities 
Launch processing modules, schedule processing operations on the data, send 

commands to processing modules 

Interactions All other modules 

Preconditions Data proxy is running 

Postconditions Processing modules are running/stopped 

 

2.3.4 Anomaly detection 

This module runs image processing and image understanding algorithms. The anomaly detection 

module offers one or more of the following capabilities depending on how the command line 

arguments and compilation options are set: 

 Preprocessing 

 Crack detection 

 Fasteners training 

 Fasteners testing 

 Texture testing 

Table 7. Anomaly Detection module overview 

Inputs Data object containing raw images or preprocessed data 

Outputs Data object containing detection results or processed data 

Responsibilities Run algorithms on data 

Interactions Data proxy, process scheduler 

Preconditions Raw data or object containing preprocessed data has been posted 

Postconditions Preprocessed data object is created 

 

 



 14 

3. Vision Client 

In this section, we describe the front-end to the anomaly detection framework. 

3.1 Overview 

The UMD Railway Vision Client (the client) provides the user interface to the railway data 

repository. The purpose of the client is to: 

1) Visualize the results of anomaly detection algorithms and validate or reject automated 

detections,  

2) Generate ground truth data to be used to train such algorithms,  

3) Provide a user interface for active learning (user-assisted) algorithms  

The client can currently: 

• Access the data repository  

• Provide user authentication and encryption for secure data access  

• Index images  

• Display images  

• Scroll through continuous 1 mile images  

• Insert/remove/edit defect bounding boxes  

• Provide pixel-level annotation of conditions  

• Generate a side-by-side display of data from multiple surveys 

• Transfer defect annotations between surveys  

• Estimate of crack width/height/area and analysis of crack growth rates  

• Query tie conditions with ability to save and retrieve user queries  

• Query automatically detected fastener conditions 

• Query automatically detected crumbling and chipped ties  

• Filter queries to a subset of surveys and/or type of track  

• Navigate quickly through search results  

• Export filtered or unfiltered component lists including multiple surveys  

• Export defect lists including multiple surveys  

• Export filtered or unfiltered fastener lists with location, fastener type and fastener 

condition  

• Insert/remove/edit tie bounding boxes  

• Automatically align tie images between different surveys  

• Provide multiplatform support (Windows/Linux/Mac/iOS) 
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In Figure 2, the client displays a broken tie. The client’s left panel provides a hierarchical view 

of all the images in the repository, the right panel provides an aerial view of the track that is 

being inspected, and the bottom panel provides a view of the whole tie with metadata, while the 

central panel provides a close up of the currently selected defect and allows the user to zoom and 

scroll. This view can scroll through one mile of data.  

The software contains menu options that allow the user to access specialized functions. For 

example, Figure 4 shows the interface for annotating fastener types to train the fastener detection 

algorithm, Figure 3 shows the interface for reviewing the results of fastener detection, and Figure 

5 shows the effects of material classification and semantic segmentation on a crumbling tie. The 

Vision Client also supports twin mode (Figure 5), where images of the same tie from different 

surveys can be compared side-by-side. These are just a few examples of the capabilities offered 

by the Vision Client. 

 

Figure 2. Default screen layout of the Railway Vision Client. 

 

 

Figure 3. Fastener assessment results viewer. 
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Figure 4. Fasteners training set review tool. 

 

 

Figure 5. Railway Vision Client in twin view mode with fastener detection and semantic 

segmentation results overlaid. 
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4. Crack Detection Module 

In this section, we describe the algorithm for detecting cracks and extracting crack measurements 

such as length of crack centerline and average crack width. Our crack detector is based on the 

Discrete Shearlet Transform (DST). Shearlets have emerged in recent years as one of the most 

successful methods for the multiscale analysis of multidimensional signals. Unlike wavelets, 

shearlets form a pyramid of well-localized functions that are defined not only over a range of 

scales and locations, but also over a range of orientations and with highly anisotropic supports. 

As a result, shearlets handle the geometry of multidimensional data much more effectively  than 

traditional wavelets, and this has been exploited in a wide range of applications from image and 

signal processing. 

4.1 Background 

Detecting cracks on concrete structures is a difficult problem, due to the changes in width and 

direction of the cracks as well as the variability in the surface texture. This problem has recently 

received considerable attention. Redundant representations, such as undecimated wavelets, have 

been extensively used for crack detection  (Subirats, Dumoulin, Legeay, & Barba, 2006)  

(Chambon & Moliard, 2011). However, wavelets have poor directional sensitivity and detecting 

weak diagonal cracks can be difficult. To overcome this limitation, Ma, Zhao, & Hou (2008) 

proposed the use of the nonsubsampled contourlet transform (Cunha, Zhou, & Do, 2006) for 

crack detection. However, all these methods rely on the assumption that the background surface 

can be modeled as additive white Gaussian noise and this assumption leads to matched filter 

solutions. Real images textures are highly correlated and applying linear filters causes poor 

performance. 

To address this limitation, we adopted a completely new approach to crack detection based on 

separating the image into morphological distinct components using sparse representations, 

adaptive thresholding and variational regularization. This technique was pioneered by Stark et al. 

(Starck, Elad, & Donoho, 2005) and later extended and generalized by many authors such as 

Bobin, Starck, Fadili, Moudden, & Donoho (2007), Easley, Labate, & Negi (2013), and 

Kutyniok & Lim (2011). In particular, we will use the Iterative Shrinkage Algorithm with a 

combined dictionary of shearlets and wavelets to separate cracks from background texture. 

4.2 Algorithm Description 

We model an image x containing cracks on textural background as a superposition of a crack 

component 𝑥𝑐 with a textural component 𝑥𝑡: 

𝑥 = 𝑥𝑐 + 𝑥𝑡 

Let 𝛷1 and 𝛷2 be the dictionaries corresponding to wavelets and shearlets, respectively. We 

assume that 𝑥𝑐 is sparse in a shearlet dictionary 𝛷1 and similarly 𝑥𝑡 is sparse in a wavelet 

dictionary 𝛷2. That is, we assume that there are sparse coefficients 𝑎𝑐 and 𝑎𝑡 so that 𝑥𝑐 =  𝛷1𝑥𝑐 

and 𝑥𝑡 =  𝛷2𝑎𝑡. Then, one can separate these components from an 𝑥 via the coefficients 𝑎𝑐 and 

𝑎𝑡 by solving the following optimization problem: 

(�̂�𝑐, �̂�𝑡) =  𝑎𝑟𝑔𝑚𝑖𝑛𝑎𝑐,𝑎𝑡
𝜆‖𝑎𝑐‖1 + 𝜆‖𝑎𝑡‖1 +

1

2
‖𝑥 − 𝛷1𝑎𝑐 − 𝛷2𝑎𝑡‖2

2,  
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where for an n-dimensional vector b, the ℓ1 norm is defined as ‖𝑏‖1 = ∑ |𝑏𝑖|𝑖 . This image 

separation problem can be solved efficiently using an iterative shrinkage algorithm proposed in 

(Kutyniok & Lim, 2011). 

4.3 Experimental Results 

In our experiments, we used symlet wavelets with four decomposition levels to generate 𝛷2 and 

a 4-level shearlet decomposition with Meyer filters of sizes 80 × 80 on all four scales, eight 

directional filters on the first three scales, and 16 directional filters on the forth scale, to generate 

𝛷1. To assess the performance of the separation algorithm, we calculated the ROC curves for 

each image using the following detection methods: 

a) Shearlet-C: This method takes advantage of the Parseval property of the shearlet transform 

and performs crack detection directly in the transform domain. We first decompose the image 

into cracks and texture components using Iterative Shrinkage with a shearlet dictionary and a 

wavelet one. Instead of using the reconstructed image, we analyze the values of the shearlet 

transform coefficients. For each scale in the shearlet transform domain, we analyze the 

directional components corresponding to each displacement and collect the maximum 

magnitude across all directions. If the sign of the shearlet coefficient corresponding to the 

maximum magnitude is positive, we classify the corresponding pixel as background, 

otherwise we assign the norm of the vector containing the maximum responses at each scale 

to each pixel and we apply a threshold. 

b) Shearlet-I: We first decompose the image into cracks and texture components as described 

for the previous method. Then, we apply an intensity threshold on the reconstructed cracks 

image. 

We compare our results to the following two basic methods not based on shearlets: 

c) Intensity: This is the most basic approach, which only uses image intensity. After 

compensating for slow variations of intensity in the image, we apply a global threshold. 

d) Canny: We use the Canny edge detector (Canny, 1986) as implemented in MATLAB using 

the default 𝜎 = √2 and the default high to low threshold ratio of 40%. 

After using a low-level detector, it may be necessary to remove small isolated regions 

corresponding to false detections due to random noise. This postprocessing step may reduce the 

false detection rate on intensity-based methods. However, to provide an objective comparison, 

we have generated the experimental results without running any postprocessing. We leave the 

perfomance analysis of a complete crack detector for future work. 

To evaluate the performance of each crack detector, we manually annotated the crack pixels in 

each image. To mitigate the effect of ambiguous segmentation boundaries, we annotated the 

boundaries around the cracks as tightly as possible (making sure that only pixels completely 

contained inside the crack boundaries are annotated as such) and defined an envelope region 

around each crack whose labels are treated as “do not care”. Formally, let Ω denote the set of 

pixels in the image, and F (foreground) denote the set of pixels labeled as cracks. We define the 

set B (backgrond) as 

𝐵 = {𝑥 ∈ 𝛺: min
𝑓∈𝐹

‖𝑥 − 𝑓‖ > 𝛿}, 
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where ‖𝑥 − 𝑓‖ denotes the Euclidean distance between sites 𝑥 and 𝑓. In our experiments we 

used 𝛿 = 3. To account for possible small inaccuracies in the ground truth, we performed a 

bipartite graph matching between the detected crack pixels and the crack pixels in the ground 

truth. For our experiments, we allow matching within a maximum distance of two pixels. This 

choice of matching metric does not penalize crack overestimation errors as long as these errors 

are contained in such envelope. This allows us to decouple errors in estimating the position of 

the crack centerline from errors in estimating the crack width, which is more sensitive to lighting 

variations. Let D be the set of pixels detected as cracks by a given detector and 

𝑡𝑝 = |𝐷 ∩ 𝐹|    𝑓𝑛 = |�̅� ∩ 𝐹|    𝑝 = 𝑡𝑝 + 𝑓𝑛 = |𝐹|

𝑡𝑛 = |�̅� ∩ 𝐵|    𝑓𝑝 = |𝐷 ∩ 𝐵|    𝑛 = 𝑡𝑛 + 𝑓𝑝 = |𝐵|
 

The probability of detection (PD) and false alarm (PF) are defined as 

𝑃𝐷 =
𝑡𝑝

𝑝
    𝑃𝐹 =

𝑓𝑝

𝑛
 

A sequence of admissible detectors 𝐷|𝑃𝐹≤𝜖 for a given false alarm rate 𝜖, would produce 

monotonically increasing detection rates, 𝑃𝐷|𝑃𝐹≤𝜖. The Receiver Operating Characteristic 

function (ROC curve) is defined as PD as a function of PF. 

𝑅𝑂𝐶(𝑥) =  max
𝜖≤𝑥

𝑃𝐷|𝑃𝐹≤𝜖 

One commonly used metric is the Area Under the ROC Curve (AUC), defined by 

𝐴𝑈𝐶 = ∫ 𝑅𝑂𝐶(𝑥)𝑑𝑥
1

0

, 

which corresponds to the probability that a sample randomly drawn from F will receive a score 

higher than a sample randomly drawn from B. AUC provides a measure of the average 

performance of the detection across all possible sensitivity settings. Although it is an important 

measure, practically we are interested in knowing how well the detector will work when we 

choose a particular sensitivity setting. For this reason, we have selected Constant False Alarm 

Rate (CFAR) detectors with PF = 10
-3

 and PF = 10
-4

 and we report the corresponding PD. For 

completeness, we also report the F1 score (also known as the Dice similarity index), which is 

defined as 

𝐹1 =
2 𝑡𝑝

2 𝑡𝑝 + 𝑓𝑛 + 𝑓𝑝
 

In this report, we report the peak 𝐹1 score for all methods. The Canny edge detection method 

(Canny, 1986) estimates the location of the crack boundary, while the other three methods 

estimate the location of the crack itself. To have a meaningful comparison, we have generated a 

separate ground truth masks for the crack outline, so we can use the same matching metric on the 

Canny method. For each method, we have used the same algorithm parameters on all the images. 

Figure 6 shows three example images of typical cracks on each type of background texture 

(coarse, medium and smooth). The images have been intensity-normalized, and cropped into 

patches of 512 × 512 pixels. This image size is dyadic, so that we can achieve fastest 

computation of the FFT-based Shearlet transform and is enough to cover the whole width of an 
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8” tie. Figure 7 shows qualitative crack detection results and Figure 8 shows the ROC curves for 

all tested methods.  

Table 8 summarizes our results. We observe that our shearlet-based detectors perform 

consistently well on all evaluation metrics. Note that, on Image 3, the Shearlet-I method, which 

is based on intensity in the reconstructed image, produces better results than all other methods. 

Due to its simplicity, intensity-based methods are still being used. For example, the system 

recently proposed in Oliveira & Correia, 2013) uses pixel intensities to detect cracks on road 

pavement. Based on the results from Table 8, we can conclude that, with the proper image 

preprocessing, intensity can still be a powerful feature for crack detection. However, the 

detection performance provided by shearlet-based features is more consistent across images. In 

future work, we will further explore the potential of combining both intensity and shearlet-based 

features. With any of the methods described in this section, it may be possible to further remove 

small artifacts in the detected crack boundary by adding a postprocessing step as was done in 

(Chambon & Moliard, 2011). 

 

Table 8. Comparison of detection performance for different crack detection algorithms. 

Image Method AUC F1 score 𝑷𝑫𝑷𝑭=𝟏𝟎−𝟑 𝑷𝑫𝑷𝑭=𝟏𝟎−𝟒 

1 

Shearlet-C 0.99915 0.79916 0.8398 0.6746 

Shearlet-I 0.99908 0.65810 0.7140 0.4247 

Intensity 0.99874 0.73188 0.7411 0.5722 

Canny 0.94457 0.27752 0.2114 0.1099 

2 

Shearlet-C 0.99999 0.98841 0.9989 0.9895 

Shearlet-I 0.99557 0.62705 0.4837 0.3964 

Intensity 0.99037 0.55404 0.4371 0.3342 

Canny 0.99043 0.81787 0.6425 0.4462 

3 

Shearlet-C 0.99934 0.76418 0.8368 0.5874 

Shearlet-I 0.99977 0.82353 0.9101 0.7098 

Intensity 0.99650 0.45992 0.0543 0.0000 

Canny 0.96248 0.19436 0.0000 0.0000 
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Figure 6. Image separation. 

(a) Original images separated into (b) cracks and (c) textural background components, and 

(d) crack ground truth 
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Figure 7. Crack detection results. 

(a) Using shearlet coefficients (Shearlet-C) (b) using thresholding in the image reconstructed 

using shearlets (Shearlet-I) (c) using intensity thresholding in the original image, and (d) using 

Canny edge detection. 
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Figure 8. ROC curves for crack detection. 

(a) Image 1, (b) image 2, (c) image 3. 

 



 24 

5. Fasteners Inspection 

Fasteners maintain the rails in a fixed position and they are critical railway components. If they 

fail, train derailments will occur due to gage widening or wheel climb, so their condition needs to 

be periodically monitored. Several computer vision methods have been proposed in the literature 

for track inspection applications, but these methods either require laser ranging or are not robust 

enough to deal with the clutter and background noise that is present in the railroad environment. 

In this section, we demonstrate that it is possible to inspect tracks for missing and broken 

fasteners with computer vision techniques that only use grayscale images and need no additional 

sensors. We have achieved this by 1) carefully aligning the training data, 2) reducing intra-class 

variation, and 3) bootstrapping difficult samples to improve the classification margin. Using the 

histogram of oriented gradients features and a combination of linear SVM classifiers, the 

algorithm described in this section can inspect ties for missing or defective rail fastener problems 

with a probability of detection of 98% and a false alarm rate of 1.23%. 

5.1 Approach 

In this section, we describe the details of our proposed approach to automatic fastener detection. 

Figure 9 shows the types of defects that our algorithm can detect. The detectors have been tested 

on concrete ties, but the framework can easily accommodate other types of fasteners and ties. 

 

 

Figure 9. Example of defects that our algorithm can detect. 

Blue boxes indicate good fasteners, orange boxes indicate broken fasteners, and purple boxes 

indicate missing fasteners. White numbers indicate tie index from last mile post. Other numbers 

indicate type of fastener (for example, 0 is for e-clip fastener). 

 

5.1.1 Overview 

Due to surface variations that result from grease, rust and other elements in the outdoor 

environment, segmenting railway components is very difficult. Therefore, we avoid that task by 

using a detector based on a sliding window that we run over the “inspectable” area of the tie. The 
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detector uses the well-known descriptor based on the Histograms of Oriented Gradients (HOG) 

(Dalal & Triggs, 2005), which was originally designed for pedestrian detection, but it has been 

proven effective for a variety of object detection tasks in unconstrained environments. Though 

fasteners are usually located very close to the rail, we need to search over a much broader area 

because on turnouts (switches and frogs) fasteners are positioned farther away from the rail, with 

more varied configurations. 

5.1.2 Classification 

Our goal is to simultaneously detect the most likely fastener location within each predefined 

Region of Interest (ROI), and then classify such detections into one of three basic conditions: 

background (or missing fastener), broken fastener, and good fastener. Then, for good and broken 

fastener conditions, we want to assign class labels for each fastener type (PR clip, e-clip, fastclip, 

c-clip, and j-clip).  

Figure 10 shows the complete categorization that we use, from coarsest to finest. At the coarsest 

level, we want to classify fastener vs. unstructured background clutter. The background class 

also includes images of ties where fasteners are completely missing because: 1) it is very 

difficult to train a detector to find the small hole left on the tie after the whole fastener has been 

ripped off, 2) we do not have enough training examples of missing fasteners, and 3) most 

missing fasteners are on crumbled ties for which the hole is no longer visible.  

Once we detect the most likely fastener location, we want to classify the detected fastener within 

the broken vs. good spectrum and then classify it into the most likely fastener type. Although this 

top-down reasoning works for a human inspector, it does not work accurately in a computer 

vision system because both the background class and the fastener class have too much intra-class 

variations. As a result, we employ a bottom-up approach. 
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Figure 10. Object categories used for detection and classification (from coarsest to finest 

levels). 

 

Since we use inner products, our detector may resemble the correlation-based approach used in 

(Babenko, 2009), but there are three key differences that set us apart: 1) our input is a HOG 

feature vector rather than raw pixel intensities, 2) we use a linear SVM to learn the coefficients 

of the detection filter, 3) we use a second classifier to reject misclassified fastener types.  

 

 

   (a)         (b) 

Figure 11. Justification for using two classifiers for each object category. 

Shaded decision region corresponds fastener in good condition, while white region 

corresponds to defective fastener. Blue circles are good fasteners, orange circles are 

missing	
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PR	clip	 e	clip	 fastclip	 c	clip	 j	clip	
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broken fasteners, and purple circles are background/missing fasteners.  (a) Classification 

region of good fastener vs. rest (b) Classification region of intersection of good fastener 

vs. background and good fastener vs. rest-minus-background. The margin is much wider 

than using a single classifier. 

 

To achieve the best possible generalization at test time, we have based our detector on the 

maximum margin principle of the SVM. Although SVM is a binary classifier, it is 

straightforward to build a multi-class SVM, for example, by combining several one-vs-rest or 

one-vs-one SVM classifiers, either by a voting scheme or by using the DAG-SVM framework 

(Platt, Cristianini, & Shawe-taylor, 1999). Our approach uses the one-vs-rest strategy, but instead 

of treating the background class as just another object class, we treat it as a special case and use a 

pair of SVMs per object class.  

For instance, if we had used a single learning machine, we would be forcing the classifier to 

perform two different unrelated tasks: a) reject that the image patch that does not contain random 

texture and b) reject that the object does not belong to the given category. Therefore, given a set 

of object classes 𝒞, we train two detectors for each object category. The first one, with weights 

𝑏𝑐, classifies each object class 𝑐 ∈ 𝒞 vs. the background/missing class 𝑐 ∉ 𝒞, and the second one, 

with weights 𝑓𝑐 classifies object class 𝑐 vs. other object classes 𝒞\𝑐. As illustrated in Figure 11, 

asking our linear classifier to perform both tasks at the same time would result in a narrower 

margin than training separate classifiers for each individual task. Moreover, to avoid rejecting 

cases where all 𝑓𝑐 classifiers produce negative responses but one or more 𝑏𝑐 classifiers produce 

strong positive responses that would otherwise indicate the presence of a fastener, we use the 

negative output of 𝑓𝑐 as a soft penalty. Then the likelihood that sample 𝑥 belongs to class 𝑐 

becomes 

𝐿𝑐(𝑥) =  𝑏𝑐 ⋅ 𝑥 + min(0, 𝑓𝑐 ⋅ 𝑥), 

where 𝑥 = 𝐻𝑂𝐺(𝐼) is the feature vector extracted from a given image patch 𝐼. The likelihood 

that our search region contains at least one object of class 𝑐 is the score of the union, so 

𝐿𝑐 =  max
𝑥∈𝒳

𝐿𝑐(𝑥), 

where 𝒳 is the set of all feature vectors extracted within the search region, and our classification 

rule becomes 

 �̂� = {
arg max

𝑐∈𝒞
𝐿𝑐 max

𝑐∈𝒞
𝐿𝑐 > 0

𝑚               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

5.1.3 Score Calculation 

For the practical applicability of our detector, it needs to output a scalar value that can be 

compared to a user-selectable threshold τ. Since there are several ways for a fastener to be 

defective (either missing or broken), we need to generate a single score that informs the user how 

confident the system is that the image contains a fastener in good condition. This score is 

generated by combining the output of the binary classifiers introduced in the previous section. 

We denote the subset of classes corresponding to good fasteners as 𝒢 and that of broken fasteners 

as ℬ. These two subsets are mutually exclusive, so 𝒞 =  𝒢 ∪ ℬ and 𝒢 ∩ ℬ = ∅. To build the 
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score function, we first compute the score for rejecting the missing fastener hypothesis (i.e, the 

likelihood that there is at least one sample 𝑥 ∈ 𝒳 such that 𝑥 ∉ 𝑚) as 

𝑆𝑚 =  max
𝑐∈𝒢

𝐿𝑐 

where 𝐿𝑐 is the likelihood of class 𝑐 as previously defined. Similarly, we compute the score for 

rejecting the broken fastener hypothesis (i.e, the likelihood that for each sample 𝑥 ∈ 𝒳, 𝑥 ∉ ℬ) 

as 

𝑆𝑏 =  − max
𝑐∈ℬ

max
𝑥∈𝒳

𝑓𝑐 ⋅ 𝑥, 

The reason why the 𝑆𝑏 does not depend on a c-vs-background classifier 𝑏𝑐 is because mistakes 

between missing and broken fastener classes do not need to be penalized. Therefore, 𝑆𝑏 need 

only produce low scores when 𝑥 matches at least one of the models in ℬ. The negative sign in 𝑆𝑏 

results from the convention that a fastener in good condition should have a large positive score. 

The final score becomes the intersection of these two scores. 

𝑆 = min(𝑆𝑚, 𝑆𝑏). 

The final decision is done by reporting the fastener as good if 𝑆 > 𝜏, and defective otherwise. 

5.1.4  Training Procedure 

The advantage of using a maximum-margin classifier is that once we have enough support 

vectors for a particular class, it is not necessary to add more inliers to improve classification 

performance. Therefore, we can potentially achieve relatively good performance with only 

having to annotate a very small fraction of the data. To generate our training set, we initially 

selected ~30 good quality (with no occlusion and clean edges) samples from each object 

category at random from the whole repository and annotated the bounding box location and 

object class for each of them. Our training software also automatically picks, using a randomly 

generated offset, a background patch adjacent to each of the selected samples. 

Once we had enough samples from each class, we trained binary classifiers for each of the 

classes against the background and tested on the whole dataset. Then, we randomly selected 

misclassified samples and added those that had good or acceptable quality (no occlusion) to the 

training set. To maintain the balance of the training set, we also added, for each difficult sample, 

2 or 3 neighboring samples. Since there are special types of fasteners that do not occur very 

frequently (such as the c-clips or j-clips used around joint bars), in order to keep the number of 

samples of each type in the training set as balanced as possible, we added as many of these 

infrequent types as we could find. Figure 12 shows a subset of our training set for fastener 

detection and classification. 

 



 29 

 

Figure 12. Examples of fastener images used to train our detector. 

5.1.5 Alignment Procedure 

For learning the most effective object detection models, the importance of properly aligning the 

training samples cannot be emphasized enough. Misalignment between different training 

samples would cause unnecessary intra-class variation that would degrade detection 

performance. Therefore, all the training bounding boxes were manually annotated, as tightly as 

possible to the object contour by the same person to avoid inducing any annotation bias. For 

training the fastener vs. background detectors, our software cropped the training samples using a 

detection window centered around these boxes and for training the fastener vs. rest detectors, our 

software centered the positive samples using the user annotation and the negative samples were 

re-centered to the position where the fastener vs. background detector generated the highest 

response. This was done to force the learning machine to learn to differentiate object categories 

by taking into account parts that are not common across object categories. 

5.2 Experimental Results 

To evaluate the accuracy of our fastener detector, we have tested it on the data subset introduced 

in Table 2. We downsampled the images by a factor of 2, for a pixel size of 0.86 mm. To assess 

the detection performance under different operating conditions, we flagged special track sections 

where the fastener visible area was less than 50% due to a variety of occluding conditions, such 

as protecting covers for track-mounted equipment or ballast accumulated on the top of the tie. 

We also flagged turnouts so we could report separate ROC curves for both including and 

excluding them. 

1	

Background/missing	 Good	fasteners	 Broken	
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5.2.1 Fastener Categorization 

On our dataset, we have a total of eight object categories (two for broken clips, one for PR clips, 

one for e-clips,two for fast clips, one for c-clips, and one for j-clips) plus a special category for 

background (which includes missing fasteners). We also have four synthetically generated 

categories by mirroring non-symmetric object classes (PR, e, c, and j clips), so we use a total of 

12 object categories at test time. The HOG features are extracted using a 160 × 160 pixel sliding 

window with a strap of 8 × 8. We use the HOG implementation in the object detection module of 

OpenCV using default parameters. For classification, we use the linear SVM implementation in 

the machine learning module of OpenCV (which is derived from LIBSVM) with a soft margin 

(C=0.01). Figure 13 shows an example of the HOG features extracted from a fastclip fastener. 

 

 

Figure 13. Feature extraction for fastener detection. 

 

For training our detectors, we used a total of 3,805 image patches, including 1,069 good 

fasteners, 714 broken fasteners, 33 missing fasteners, and 1,989 patches of background texture. 

During training, we also included the mirrored versions of the missing/background patches and 

all symmetric object classes. To evaluate the feasibility of the algorithm, we performed 5-fold 

cross-validation on the training set, where we classified each patch into one of the nine basic 

object categories (we excluded the four artificially generated mirrored categories). Figure 14 (a) 

shows the resulting confusion matrix. We only had 14 misclassified samples (0.37% error rate). 

If we consider the binary decision problem of finding defective fasteners (either missing or 

broken), we have a detection rate of 99.74% with a false alarm rate of 0.65%. This is an 

encouraging result, since as explained in section 5.1.4, our training set has been bootstrapped to 

contain many difficult samples. 

 

Input	image:	160	x	160	pixels	 Feature	Length:	12996	
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Figure 14. Confusion matrix on 5-fold cross-validation of the training set  

using (a) the proposed method (b) the method described in (Babenko, 2009) with HOG 

features. 

 

In addition to the proposed method described in section 5.1, we have also implemented and 

evaluated the following alternative methods: 

 Intensity normalized OT-MACH: As in (Babenko, 2009), for each image patch, we 

subtract the mean and normalize the image vector to unit norm. For each class c, we 

design an OT-MACH filter in the Fourier domain using ℎ𝑐 =  [𝛼𝐼 + (1 − 𝛼)𝐷𝑐]−1 𝑥�̅� 

with 𝛼 = 0.95, where I is the identity matrix, 𝐷𝑐 = (1/𝑁𝑐) ∑ 𝑥𝑐𝑖𝑥𝑐𝑖
∗𝑁𝑐

𝑖=1 , and 𝑁𝑐 is the 

number of training samples of class 𝑐. 

 HOG features with OT-MACH: The method in (Babenko, 2009), but replacing 

intensity with HOG features. Since HOG features are already intensity-invariant, the 

design of the filters reduces to ℎ𝑐 = 𝑥�̅�. 

 HOG features with DAG-SVM: We run one-vs-one SVM classifiers in sequence. We 

first run each class against the background on each candidate region. If at least one 

classifier indicates that the patch is not background, then we run the DAG-SVM 

algorithm (Platt, Cristianini, & Shawe-taylor, 1999) over the remaining classes. 

 HOG features with majority voting SVM: We run all possible one-vs-one SVM 

classifiers and select the class with the maximum number of votes. 

For the first and second methods, we calculate the score using the formulation introduced in 

sections 5.1.2 and 5.1.3, but with 𝑏𝑐 = ℎ𝑐 and 𝑓𝑐 = ℎ𝑐 −  ∑ ℎ𝑖/(𝐶 − 1)𝑖≠𝑐 . For the third and last 

methods, we first estimate the most likely class in 𝒢 and ℬ. Then, we set 𝑆𝑏 as the output of the 

classifier between these two classes, and 𝑆𝑚 as the output of the classifier between the 

background and the most likely class. 
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Figure 15. ROC curves for the task of detecting defective (missing or broken) fasteners 

using 5-fold cross-validation on the training set. 

In Figure 15, we can observe that the proposed method is the most accurate, followed by the 

HOG with OT-MACH method. The other methods are clearly inferior. Figure 14 shows the 

confusion matrix of our method and the second best method. This method had an error rate of 

2.23% (6 times greater than our proposed method). The detection rate was 98.86% with a false 

alarm rate of 4.02%. We can see that j-clips and c-clips are the most difficult types of fasteners 

because they contain more intra-class variation than other types; these fasteners are placed next 

to joint bars, so some of them are slightly rotated to accommodate the presence of joint bar bolts. 

5.2.2 Defect Detection 

To evaluate the performance of our defect detector, we divided each tie into four regions of 

interest (left field, left gage, right gage, right field) and calculated the score defined in section 

5.1.3 for each of them. Figure 15 shows the ROC curve for cross-validation on the training set, 

and Figure 16 for the testing set of 813,148 ROIs (203,287 ties). The testing set contains 1,051 

ties images with at least one defective fastener per tie. The total number of defective fasteners in 

the testing set was 1,086 (0.13% of all the fasteners), including 22 completely missing fasteners 

and 1,064 broken fasteners. The number of ties that we flagged as “uninspectable” is 2,524 

(1,093 on switches, 350 on lubricators, 795 covered in ballast, and 286 with other issues). 
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Figure 16. ROC curves for the task of detecting defective (missing or broken) fasteners on 

the 85-mile testing set. 

 

We used the ROC on clear ties (blue curve) in Figure 16 to determine the optimal threshold to 

achieve a design false alarm rate of 0.1% (𝜏 = 0.1614). Using this sensitivity level, we ran our 

defective fastener detector at the tie level (by taking the minimum score across all four regions).  

Results are shown in Table 9. 

 

Table 9. Results for detection of ties with at least one defective fastener. 

Subset Total ties Defective PD PFA 

Clear ties 200,763 1,037 98.36% 0.38% 

Clear + switch 201,856 1,045 97.99% 0.71% 

All ties 203,287 1,051 98.00% 1.23% 

 

Our evaluation protocol has been to mark the whole tie as “uninspectable” if at least one of the 

fasteners is not visible in the image. This is not ideal as there are situations where parts of the tie 

are still “inspectable”, for example when the field side of the rail is covered with ballast, but the 

gage side is inspectable (this explains the six additional defective ties when including 

uninspectable ties). 
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6. Crumbling and Chipped Ties Detection 

The condition of railway tracks needs to be periodically monitored to ensure safety. Cameras 

mounted on a moving vehicle such as a hi-rail vehicle or a geometry inspection car can generate 

large volumes of high resolution images. Extracting accurate information from those images is 

challenging due to the clutter in the railroad environment. In this section, we describe a novel 

approach to visual track inspection that uses Deep Convolutional Neural Networks (DCNN) to 

perform material classification and semantic segmentation on ties. We show that DCNNs that are 

trained end-to-end for material classification are more accurate than shallow learning machines 

with hand-engineered features and are more robust to noise. Our approach results in a material 

classification accuracy of 93.35% using 10 classes of materials. This allows for the detection of 

crumbling and chipped tie conditions at detection rates of 86.06% and 92.11%, respectively, at a 

false positive rate of 10 FP/mile on the 85-mile subset introduced in section 1.4.1. 

6.1 Background 

Texture segmentation and material classification are essential components in any vision-based 

track inspection system. The crack detection and defective fastener detection results reported in 

sections 4 and 5 assume that the tie boundary location is available. For example, for a crack 

detection algorithm to work in practice, it must be paired with a reliable boundary detection 

algorithm. Indeed, if information is available about the type of material that the tie is made of 

and the tie region that is covered in ballast, the false alarm rates of both crack and fastener 

inspection would be drastically reduced. In this section, we describe our method for material 

classification and semantic segmentation, which can inspect ballast and ties of different materials 

and detect chipping and crumbling on concrete ties. 

As we will see later, the use of predefined texture features followed by a classifier, is not enough 

for solving the fine-graned material classification problem posed in this section. For example, the 

system from (Resendiz, Hart, & Ahuja, 2013) is capable of segmenting wood ties from ballast 

using a combination of Gabor filters and an SVM classifier. However, classifying wood-vs-

ballast is a much easier problem than the 10-class problem at hand and requires a more carefully 

designed approach. Given the vast amount of training data available in our dataset, it is 

reasonable to resort to deep learning techniques.  

The idea of enforcing translation invariance in neural networks via weight sharing goes back to 

the Neocognitron (Fukushima, 1980). Based on this idea, LeCun et al. developed the concept 

into Deep Convolutional Neural Networks (DCNN) and used it for digit recognition (LeCun, et 

al., 1989), and later for more general optical character recognition (OCR) (LeCun, Bottou, 

Bengio, & Haffner, 1998). During the last two years, DCNNs have become ubiquitous in 

achieving state-of-the-art results in image classification (Krizhevsky, Sutskever, & Hinton, 2013 

and C.Szegedy, et al., 2014) and object detection (R.Girshick, J.Donahue, T.Darrell, & J.Malik, 

2014). This resurgence of DCNNs has been facilitated by the availability of efficient GPU 

implementations. More recently, DCNNs have been used for semantic image segmentation. For 

example, the work of Long, Shelhamer, & Darrell (2014) shows how a DCNN can be converted 

in to a Fully Convolutional Network (FCN) by replacing fully-connected layers with 

convolutional ones. 
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6.2 Approach 

In this section we describe the proposed approach to track inspection using material 

classification and semantic segmentation. 

6.2.1 Architecture 

Our implementation uses a Fully Convolutional Network (Long, Shelhamer, & Darrell, 2014) 

based on BVLC Caffe (Jia, et al., 2014). We have a total of 4 convolutional layers between the 

input and the output layer. The network uses rectified linear units (ReLU) as non-linearity 

activation functions, overlapping max pooling units of size 3 × 3 and stride of 2. In our 

experiments we found that dropout is not necessary. Since no preprocessing is done in the 

sensor, we first apply global gain normalization on the raw image to reduce the intensity 

variation across the image. This gain is calculated by smoothing the signal envelope estimated 

using a median filter.  We estimate the signal envelope by low-pass filtering the image with a 

Gaussian kernel. Although DCNNs are robust to illumination changes, normalizing the image to 

make the signal dynamic range more uniform improves accuracy and convergence speed.  We 

also subtract the mean intensity value that is calculated on the whole training set. 

 

 

Figure 17. Network architecture. 

This preprocessed image is the input for our network. The architecture is illustrated in Figure 17. 

The first layer takes a globally normalized image and filters it with 48 filters of size 9 × 9. The 

second convolutional layer takes the (pooled) output of the first layer and filters it with 64 

kernels of size 5 × 5 × 48. The third layer takes the (rectified, pooled) output of the second layer 

and filters it with 256 kernels of size 5 × 5 × 48. The forth convolutional layer takes the 

(rectified, pooled) output of the third layer and filters it with 10 kernels of size 1 × 1 × 256. 
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Figure 18. Material categories. 

(a) ballast (b) wood (c) rough concrete (d) medium concrete (e) smooth concrete 

(f) crumbling concrete (g) chipped concrete (h) lubricator (i) rail (j) fastener 

 

The output of the network contains ten score maps at 1/16th of the original resolution. Each 

value 𝛷𝑖(𝑥, 𝑦) in the score map corresponds to the likelihood that pixel location (𝑥, 𝑦) contains 

material of class i. The 10 classes of materials are defined in Figure 18. The network has a total 

of 493,226 learnable parameters (including weights and biases), of which 0.8% correspond to the 

first layer, 15.6% to the second layer, 83.1% to the third layer, and the remaining 0.5% to the 

output layer. 

6.2.2 Data Annotation  

The ground truth data has been annotated using the annotation tool integrated in the Vision 

Client described in section 3. The tool allows assigning a material category to each tie as well as 

its bounding box. The tool also allows defining polygons enclosing regions containing 

crumbling, chips or ballast. We used the output of our fastener detection algorithm described in 

section 5 to extract fastener examples. 

6.2.3 Training 

We trained the network using a stochastic gradient descent on mini-batches of 64 image patches 

of size 75 × 75. We did data augmentation by randomly mirroring vertically and/or horizontally 

the training samples. The patches are cropped randomly among all regions that contain the 

texture of interest. To promote robustness against adverse environment conditions, such as rain, 

grease or mud, we identified images containing such difficult cases and automatically resampled 

the data so that at least 50% of the data is sampled from such difficult images. 
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6.2.4 Score Calculation 

To detect whether an image contains a broken tie, we first calculate the scores at each site as 

𝑆𝑏(𝑥, 𝑦) = max
𝑖∉ℬ

𝛷𝑖(𝑥, 𝑦) − 𝛷𝑏(𝑥, 𝑦) 

where 𝑏 ∈ ℬ is a defect class (crumbling or chip). Then we calculate the score for the whole 

image as 

𝑆𝑏 =
1

𝛽 − 𝛼
∫ �̂�−1(𝑡)𝑑𝑡

𝛽

𝛼

 

where �̂�−1(𝑡) refers to the t sample quantile calculated from all scores 𝑆𝑏(𝑥, 𝑦) in the image. The 

detector reports an alarm if 𝑆 > 𝜏, where 𝜏 is the detection threshold. We used 𝛼 = 0.9 and 

𝛽 = 1. 

6.3 Experimental Results 

We evaluated this approach on the 85-mile subset described in section 1.4.1. As we did in the 

previous section, we downsampled the images by a factor of 2, for a pixel size of 0.86 mm. For 

the experiments reported in this section, we included all the ties in this section of track, including 

140 wood ties that were excluded from the experiments in section 5.2. 

6.3.1 Material Identification 

We divided the dataset into five splits and used 80% of the images for training and 20% for 

testing and we generated a model for each of the five possible training sets. For each split of the 

data, we randomly sampled 50,000 patches of each class. Therefore, for each model was trained 

with two million patches. We trained the network using a batch size of 64 for a total of 300,000 

iterations with a momentum of 0.9 and a weight decay of 0.00005. The learning rate is initially 

set to 0.01 and it decays by a factor of 0.5 every 30,000 iterations. 

In addition to the method described in section 6.2, we have evaluated the classification 

performance using the following methods: 

 LBP-HF with approximate Nearest Neighbor: The Local Binary Pattern Histogram 

Fourier descriptor introduced in (Ahonen, Matas, He, & Pietikäinen, 2009) is invariant to 

global image rotations while preserving local information. We used the implementation 

provided by the authors. To perform approximate nearest neighbor we used FLANN 

(Muja & Lowe, 2009) with the 'autotune' parameter set to a target precision of 70%. 

 Uniform LBP with approximate Nearest Neighbor: The 𝐿𝐵𝑃8,1
𝑢2 descriptor (Ojala, 

Pietikäinen, & Mäenpää, 2002) with FLANN. 

 Gabor features with approximate Nearest Neighbor: We filtered each image with a 

filter bank of 40 filters (five scales and eight orientations) designed using the code from 

Haghighat, Zonouz, & Abdel-Mottaleb (2013). As proposed in Manjunath & Ma (1996) 

we compute the mean and standard deviation of the output of each filter and build a 

feature descriptor as 𝑓 = [𝜇00 𝜎00 𝜇01 … 𝜇47 𝜎47]. Then, we perform approximate nearest 

neighbor using FLANN with the same parameters. 
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Figure 19. Confusion matrix of material classification on 2.5 million 80 × 80 image patches 

with (a) Deep Convolutional Neural Networks, (b) LBP-HF with FLANN (c) 𝑳𝑩𝑷𝟖,𝟏
𝒖𝟐  with 

FLANN (d) Gabor with FLANN. 

 

Table 10. Material classification results. 

Method Accuracy 

Deep CNN 93.55% 

LBP-HF with FLANN 82.05% 

𝐿𝐵𝑃8,1
𝑢2 with FLANN 82.70% 

Gabor with FLANN 75.63% 

 

The material classification results are summarized in Table 10 and the confusion matrices in 

Figure 19. 
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6.3.2 Semantic Segmentation 

Since we are using a fully convolutional DCNN, we directly transfer the parameters learned 

using small patches to a network that takes one 4096 × 320 image as an input, and generates 10 

score maps of dimension 252 × 16 each. The segmentation map is generated by taking the label 

corresponding to the maximum score. Figure 7 shows several examples of concrete and wood 

ties, with and without defects and their corresponding segmentation maps. 

 

 

Figure 20. Semantic segmentation results. 

Note 1: Images displayed a 1/16 of original resolution. 

Note 2: See Figure 18 for color legend. 
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Figure 21. ROC curve for detecting crumbling tie conditions 

 

 

Figure 22. ROC curve for detecting chip tie conditions 

Note 1: Each curve is generated considering conditions at or above a certain severity level. 

Note 2: False positive rates are estimated assuming an average of 10
-4

 images per mile. 

Confusions between chipped and crumbling defects are not counted as false positives. 
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6.3.3 Crumbling and Chipped Tie Detection 

The first three rows in Figure 20 show examples of crumbling ties and their corresponding 

segmentation map. Similarly, rows 4 through 6 show examples of chipped ties. To evaluate the 

accuracy of the crumbling and chipped tie detector described in Section 6.2.4 we divide each tie 

into four images and we evaluate the score on each image independently. Due to the large 

variation in the area affected by crumbling/chip we assigned a severity level to each ground truth 

defect, and for each severity level we plot the ROC curve of finding a defect when ignoring 

lower level defects. The severity levels are defined as the ratio of the inspectable area to the area 

that is labeled as a defect. Figure 21 shows the ROC curves for crumbling tie detection at each 

severity level. Similarly, Figure 22 shows ROC curves for chipped tie detection. Because the 

fixed 𝛼 = 0.9 in section 6.2.4 is chosen, the performance is not reliable for defects under 10% 

severity. For defects that are bigger than the 10% threshold, at a false positive rate of 10 FP/mile 

the detection rates are 86.06% for crumbling and 92.11% for chips.
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7. Conclusions and Future Work 

7.1 Industry Feedback 

During the execution of this project, we held four meetings and demonstrations with our industry 

partners: Amtrak and ENSCO, Inc. Our partners evaluated our Vision Client application, and 

provided feedback. For example, several bugs and usability shortcomings were identified and 

corrected early on. This feedback prevented such mistakes from degrading the quality of the 

overall research. Early into the project, we decided to integrate manual tie grading and tie 

alignment functionality into the Vision Client and our backend, so ENSCO reviewers could 

complete the annotation tasks needed for both the tie degradation study and the anomaly 

detection project with the same interface. This allowed the reviewers to learn a single tool and 

resulted in higher productivity, facilitating the creation of the largest annotated computer vision 

dataset for railway track inspection that we are aware of. 

The client-server architecture has permitted rapid deployment of software updates. For example, 

during the last two years, we have released a total of 71 versions, allowing changes to be tested 

quickly. This project used agile development practices, which has led to a very stable codebase 

with zero outstanding critical bugs. The feedback from the industry has been positive and has 

helped us prioritize our research and development efforts. 

7.2 General Software Development Roadmap 

The software has grown into a codebase of more than 46K source lines of code (SLOC) in an 

orderly fashion. The modular design has allowed us to encapsulate different functions with a 

limited number of dependencies and maximum code reuse. However, as we transfer this 

technology to the industry and add developers from different institutions to the project, some 

reorganization and code refactoring may be necessary. For example, it may be beneficial to 

migrate our existing messaging and logging functions from our hand-coded approach into 

Google’s protobuf and glog, as these libraries are both open-source under a BSD license and 

have a large user base. It may also be beneficial to improve code documentation, so new 

developers can learn quickly and contribute new functionality to the project. 

At the beginning of the project, a great deal of care was taken to make sure that we have a design 

that can scale up for future needs. As the project keeps growing in size, number of contributors, 

and user base, it may be beneficial to reevaluate the design to make sure that the framework does 

not have any bottlenecks that could hamper future innovation. 

7.3 Crack Detection 

Crack detection was the first component that we worked on and it has been the most challenging 

part of this project. Due to time and budget limitations, we had to address fastener inspection and 

crumbling/chip detection problems before we could deploy a robust crack detection solution. 

Although we have basic components for extracting cracks regions and generating crack 

skeletons, they are not tuned and optimized for large-scale deployment. However, the experience 

gained from developing the crack detection module has helped us design and implement the 

other two anomaly detection modules. Moreover, crack detection is not possible in isolation, as 

contextual information (provided by the other two modules) is necessary in order to avoid false 

alarms due to tie edges, fastener edges, ballast edges and so on. Therefore, as new funding for 
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crack detection becomes available, we believe that a complete crack detection module can be 

developed in a short period time. 

7.4 Fastener Detection 

In order to advance the state-of-the-art in automated railway fastener inspection, our design 

projects the samples into a representation that minimizes intra-class variation while maximizing 

inter-class separation. To achieve minimum intra-class variation, we use the HOG features 

(which have built-in intensity normalization) while preserving the distinctive distribution of 

edges. Our sophisticated graphical user interface facilitates accurate alignment of the fastener 

locations to avoid intraclass variations due to misalignment. To achieve maximum inter-class 

separation while maintaining the principle of parsimony, we resort to the maximum margin 

formulation and simplicity offered by linear SVMs. We enforce intra-class separation during the 

sampling of the training data. For the fastener-vs-background classifiers, we bootstrapped 

difficult samples when we built the training set and for the fastener-vs-rest classifiers, we aligned 

the negative samples to the most confusing position, so the learning machine could focus on the 

best way to separate classes on the most distinctive parts of the object. 

The detector discussed in section 5 is based on inner products between feature vectors that were 

extracted from image patches and a set of templates. Therefore, the computation cost is the cost 

of calculating the feature vector plus performing the inner products with each the two template 

vectors of each class. We have chosen the HOG as our feature vector, but other (probably 

simpler) alternative representations are possible and they may dramatically speed-up the 

computation time without significantly degrading the detection performance. Alternatively, we 

could speed-up the computation of the inner products by reducing the dimensionality of the 

feature vector by using Principal Component Analysis (PCA). 

Although the approach described here works most of the time and can handle a wide variety of 

track conditions, including mud splashes, heavy grease, and partial occlusions due to small 

branches, leaves, pieces of ballast or cables, there is still room for improvement. Indeed, due to 

the requirement of using fully annotated training samples our approach is statistically inefficient. 

In the future we plan to extend the training algorithm to allow it to learn from weakly labeled 

data. For weakly label data, we refer to the situation where we know that all fasteners in a range 

of ties are in good condition, but we do not know the exact location and type of each individual 

fastener. 

Also, the decision is currently based on an image-by-image basis and disregards the statistical 

dependencies of fastener location as well as fastener type between adjacent ties. Adding such 

dependencies through a Markov model would probably reduce spurious detection and 

classification errors. Moreover, specific models for the arrangement of fasteners around switches 

and other special track structures could be used to reduce the uncertainty in fastener detection 

that our solution has under such scenarios. In the future, we plan to address some of these issues 

and extend this framework by adding more types of fasteners and using more robust matching 

methods. Nevertheless, we believe that the system described here is a big step towards automated 

visual track inspection and can be used by the railroad industry in production mode. 

7.5 Crumbling and Chipped Tie Detection 

Using the proposed fully-convolutional deep CNN architecture we have shown that it is possible 

to accurately localize and inspect the condition of railway components using grayscale images. 
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We believe that our method performs better than traditional texture features because DCNNs can 

capture more complex patterns and reuse patterns learned with increasing levels of abstraction 

that are shared among all classes. This explains why there is much less overfitting on the 

anomalous classes (crumbled and chip) despite having a relatively limited amount of training 

data.  

We currently run the network in a feed-forward fashion. In the future, we plan to continue 

exploring recursive architectures to discover long-range dependencies among image regions with 

the purpose of better separate normal regions from anomalous ones. Also, as previously 

discussed, accuracy can be improved by adding the ability to learn from ambiguously labeled 

data. 

7.6 Automation and Deployment 

The current version of the software runs in batch mode and takes one mile of data at a time. For a 

successful deployment, it will be necessary to modify the software so it can run in streaming 

mode. Also, once the target computing platform is selected, it will be necessary to tune the 

algorithms so they utilize the computing resources efficiently. 

Amtrak has indicated that their first deployment will be on a hi-rail vehicle. Although hi-rail 

platforms have the advantage of lower processing speed requirements, the limitations of rack 

space, ventilation and electric power also pose challenges. We plan to work closely with Amtrak 

to ensure that their system design is compatible with the architecture described in this report. 

7.7 Future Research Topics 

Not only will we improve and refine existing algorithms, we plan to investigate the following 

topics: 

 Learning with weakly labeled anomalies: Existing detectors require that humans label 

each training sample with the exact fastener type and draw a bounding box around each 

component. We plan to develop learning algorithms that only need to know whether or 

not a tie contains an anomaly of a specific type. 

 Domain adaptation for anomaly detection under changes in operating conditions: 

The performance of existing methods significantly degrades when operating conditions 

change. For example, when the training set contains clear dry ties and the testing set 

contains ties covered with grease, the detection performance will degrade. Research in 

unsupervised domain adaptation algorithms that can handle the presence of anomalies in 

the target domain will allow existing and new algorithms to produce more accurate 

results. 

 Extreme value theory for adaptive anomaly detection: Existing detectors generate 

bursts of false alarms when the signal to noise ratio degrades. In order to keep a constant 

false alarm rate, it is necessary to use an adaptive threshold. Extreme value theory 

provides a theoretical framework for estimating the density at the upper tail of a 

probability distribution, which can be used for adaptive thresholding. We plan to develop 

adaptive threshold estimation algorithms that can handle the presence of anomalies. 

 Automated tie grading: Railroads rely on numerical tie grades to plan for their track 

maintenance. Using the results of existing algorithms, research methods for prediction of 



 45 

numerical tie grades based on rules provided by the user as well as learned from 

examples. 

 Track component detection: Find the bounding rectangle for each track component 

(rails, fasteners, ties, bolts, switch points). Estimate parameters derived from component 

detections, such as intertie distances, base gage, and distinctive bolts and fastener patterns 

to help with tie matching. 

 Tie matching: For each detected tie, automatically find the corresponding tie on previous 

surveys. It is assumed that approximate GPS location and/or milepost is available, but the 

direction of travel and track number may be unknown. 

 Tie alignment: For each pair of matched ties find a number of corresponding points and 

warp the target image so it aligns with the source image.  Tie alignment shall be robust to 

local changes and noise. 

 Change detection and characterization: Detect local differences (after intensity-

normalization and denoising) between aligned images. Classify each detected change into 

relevant or not relevant, using previously trained relevancy criteria and patterns of false 

changes such as debris, grease, mud, leaves, water, snow. Differences will be 

summarized as to whether a specific component (tie or clip) has been replaced, the 

component has developed new damage, or that previously detected damage has 

worsened. 

 Depth from stereo: Conduct research into algorithms for reconstructing depth from two 

or more cameras in the railway environment and examine methods for extracting 

information from such point clouds, such as estimating potential rail seat abrasion 

conditions or changes in ballast height that can disambiguate whether ballast is covering 

a defective tie or a good one. 

 Color imaging: Research algorithms to find new types of anomalies based on color, such 

as corrosion, vegetation, or mud pumping conditions. 

7.8 Conclusion 

This report has described a new approach for inspecting railway tracks using recent advances in 

the area of computer vision and pattern recognition. The algorithms described in this report have 

been packaged into an integrated software suite that will allow different railroad users to 

reconfigure it for their specific needs. We believe that the University-Industry partnership that 

has been forged during this project will continue in future years. The number of problems in the 

railway industry that could be solved with computer vision and pattern recognition techniques is 

large, and the work described in this report is just a tiny fraction of what can be done. We hope 

that in the future, the railway industry will consider releasing other datasets to the research 

community, so progress towards other safety-related problems can be made.  



 46 

8. References 

Ahonen, T., Matas, J., He, C., & Pietikäinen, M. (2009). Rotation invariant image description 

with local binary pattern histogram Fourier features. Image Analysis, 61-70. 

Babenko, P. (2009). Visual inspection of railroad tracks. University of Central Florida. PhD 

thesis. 

Berry, A., Nejikovsky, B., Gibert, X., & Tajaddini, A. (2008). High speed video inspection of 

joint bars using advanced image collection and processing. Proc. of World Congress on 

Railway Research.  

Bobin, J., Starck, J.-L., Fadili, M., Moudden, Y., & Donoho, D. (2007). Morphological 

component analysis: an adaptive thresholding strategy. IEEE Transactions on Image 

Processing, 16(11), 2675-2681. 

C.Szegedy, W.Liu, Y.Jia, P.Sermanet, S.Reed, D.Anguelov, et al. (2014). Going deeper with 

convolutions. arXiv:1409.4842 . 

Canny, J. (1986). A computational approach to edge detection. IEEE Trans. Pattern Analysis and 

Machine Intelligence, 8(6), 679-698. 

Chambon, S., & Moliard, J. (2011). Automatic road pavement assessment with image 

processing: Review and comparison. Int. Journal of Geophysics, 

doi:10.1155/2011/989354. 

Cunha, A., Zhou, J., & Do, M. (2006). The nonsubsampled contourlet transform: Theory, design, 

and applications. IEEE Transactions on Image Processing, 15(10), 3089-3101. 

Cunningham, J., Shaw, A., & Trosino, M. (2000, May). Patent No. 6,064,428. US. 

Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. IEEE 

Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), 1, 

pp. 886-893. 

De Ruvo, P., Distante, A., Stella, E., & Marino, F. (2009). A GPU-based vision system for real 

time detection of fastening elements in railway inspection. IEEE International 

Conference on Image Processing (ICIP), (pp. 2333-2336). 

Easley, G., Labate, D., & Negi, P. (2013). 3D data denoising using combined sparse dictionaries. 

Math. Model. Nat. Phenom., 8(1), 60-74. 

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism 

of pattern recognition unaffected by shift in position. Biological Cybernetics, 36(4), 93-

202. 

Gibert, X., Berry, A., Diaz, C., Jordan, W., Nejikovsky, B., & Tajaddini, A. (2007). A machine 

vision system for automated joint bar inspection from a moving rail vehicle. ASME/IEEE 

Joint Rail Conference & Internal Combustion Engine Spring Technical Conference.  

Haghighat, M., Zonouz, S., & Abdel-Mottaleb, M. (2013). Identification using encrypted 

biometrics. Computer Analysis of Images and Patterns, 440-448. 



 47 

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., et al. (2014). Caffe: 

Convolutional architecture for fast feature embedding. arXiv:1408.5093. 

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2013). Imagenet classification with deep 

convolutional neural networks. NIPS.  

Kutyniok, G., & Lim, W. (2011). Image separation using wavelets and shearlets. In: Curves and 

Surfaces (Avignon, France, 2010), Lecture Notes in Computer Science 6920. 

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., et al. (1989). 

Backpropagation applied to handwritten zip code recognition. Neural Computation, 1(4), 

541-551. 

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998, November). Gradient-based learning 

applied to document recognition. Proceedings of the IEEE. 

Li, Y., Trinh, H., Haas, N., Otto, C., & Pankanti, S. (2014, April). Rail component detection, 

optimization, and assessment for automatic rail track inspection . IEEE Trans. on 

Intelligent Transportation Systems, 15(2), 760-770. 

Long, J., Shelhamer, E., & Darrell, T. (2014). Fully convolutional networks for semantic 

segmentation. arXiv:1411.4038. 

Ma, C., Zhao, C., & Hou, Y. (2008). Pavement distress detection based on nonsubsampled 

contourlet transform. Int. Conf. on Computer Science and Software Engineering, 1, pp. 

28-31. 

Mahalanobis, A., Kumar, B. V., Song, S., Sims, S. R., & Epperson, J. F. (1994, June). 

Unconstrained correlation filters. Appl. Opt., 33(17), 3751-3759. 

Manjunath, B., & Ma, W. (1996). Texture features for browsing and retrieval of image data. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(8), 837-842. 

Marino, F., Distante, A., Mazzeo, P. L., & Stella, E. (2007). A real-time visual inspection system 

for railway maintenance: automatic hexagonal-headed bolts detection. IEEE Trans. on 

Systems, Man, and Cybernetics, Part C: Applications and Reviews, 37(3), 418-428. 

Muja, M., & Lowe, D. (2009). Fast approximate nearest neighbors with automatic algorithm 

configuration. International Conference on Computer Vision Theory and Application 

(VISSAPP’09) (pp. 331-340). INSTICC Press. 

Ojala, T., Pietikäinen, M., & Mäenpää, T. (2002). Multiresolution gray-scale and rotation 

invariant texture classification with local binary patterns. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 24(7), 971-987. 

Oliveira, H., & Correia, P. (2013). Automatic road crack detection and characterization. IEEE 

Transactions on Intelligent Transportation Systems, 14(1), 155-168. 

Platt, J. C., Cristianini, N., & Shawe-taylor, J. (1999). Large margin DAGs for multiclass 

classification. NIPS, 12, pp. 547-553. 

R.Girshick, J.Donahue, T.Darrell, & J.Malik. (2014). Rich feature hierarchies for accurate object 

detection and semantic segmentation. IEEE Computer Society Conference in Computer 

Vision and Pattern Recognition (CVPR).  



 48 

Resendiz, E., Hart, J., & Ahuja, N. (2013, June). Automated visual inspection of railroad tracks. 

IEEE Trans. on Intelligent Transportation Systems, 14(2), 751-760. 

Sahu, S., & Thaulow, N. (2004). Delayed ettringite formation in swedish concrete railroad ties. 

Cement and Concrete Research, 34, 1675-1681. 

Shehata, M. H., & Thomas, M. D. (2000). The effect of fly ash composition on the expansion of 

concrete due to alkalisilica reaction. Cement and Concrete Research, 30, 1063-1072. 

Smak, J. A. (2012). Evolution of Amtrak's concrete crosstie and fastening system program. 

International Concrete Crosstie and Fastening Symposium.  

Starck, J.-L., Elad, M., & Donoho, D. (2005). Image decomposition via the combination of 

sparse representation and a variational approach. IEEE Transactions on Image 

Processing, 14(10), 1570-1582. 

Subirats, P., Dumoulin, J., Legeay, V., & Barba, D. (2006). Automation of pavement surface 

crack detection using the continuous wavelet transform. IEEE International Conference 

on Image Processing, (pp. 3037-3040). 

Trinh, H., Haas, N., Li, Y., Otto, C., & Pankanti, S. (2012). Enhanced rail component detection 

and consolidation for rail track inspection. IEEE Workshop on Applications of Computer 

Vision (WACV), 289-295. 

Trosino, M., Cunningham, J., & Shaw, A. (2002, March). Patent No. 6,356,299. US. 

Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. 

IEEE Computer Society Conference on Computer Vision and Pattern Recognition 

(CVPR), 1, 511-518. 

 

 

 



 49 

Abbreviations and Acronyms 

ASR Alkali-Silicone Reaction 

AUC Area Under the Curve 

BAA Broad Agency Announcement 

BSD Berkeley Software Distribution 

BVLC Berkeley Vision and Learning Center 

CFR Code of Federal Regulation 

CMOS Complementary Metal-Oxide Semiconductor 

CNN Convolutional Neural Network 

COTS Commercial Off-The-Shelf 

CPU Central Processing Unit 

CTIV Comprehensive Track Inspection Vehicle 

CUDA Common Unified Device Architecture 

DCNN Deep Convolutional Neural Network 

DAG Directed Acyclic Graph 

DEF Delayed Ettringite Formation 

DST Discrete Shearlet Transform 

DWT Discrete Wavelet Transform 

FCN Fully-Convolutional Network 

FFT Fast Fourier Transform 

FLANN Fast Library for Approximate Nearest Neighbors 

FP False Positives 

GPGPU General-Purpose Graphics Processing Unit 

GPL General Public License 

GPU Graphics Processing Unit 

GPS Global Positioning System 

HOG Histogram of Oriented Gradients 

HSR High Speed Rail 

HTTP Hypertext Transfer Protocol 

HTTPS HTTP over SSL 

IPP Integrated Performance Primitives 
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LBP Local Binary Patterns 

LBP-HF Local Binary Patterns Histogram Fourier 

LED Light Emitting Diode 

LGPL Lesser General Public License 

NEC Northeast Corridor 

MUSIC MUltiple SIgnal Classification 

OS Operating System 

OT-MACH Optimal Trade-off Maximum Average Correlation Height 

PD Probability of Detection 

PDA Personal Digital Assistant 

PFA Probability of False Alarm 

RC Release Candidate 

ReLU Rectified Linear Unit 

ROC Receiver Operating Characteristic 

ROI Region of Interest 

SDK Software Development Kit 

SP Service Pack 

SLOC Source Lines of Code 

SSL Secure Sockets Layer 

SVM Support Vector Machine 

UMD University of Maryland 

UMIACS University of Maryland Institute for Advanced Computer Studies 

VPN Virtual Private Network 

 


